SPECIFICATIONS

- **Memory Capacity**: 64 Rhythm Patterns (16 x 4 Group)
- **Track**: 4 (1 to 4 continuous: Maximum measure=968)
- **Step**: 1 to 16 steps/measure
- **Tempo**: $J = 38$ to 250
- **Rear Panel**: Master Out (L/R.MONO) [B-Vo, o, 1x], [1]/2, [2x]
- **Trigger Out**: +5V, 20Ma Pulse TR-707, TR-727, Hi Apogeo
- **Sync In/Out (SP DIN)**: 1: Run, 2: Stop, 3/4: Clock, 5: NC, 6: Continue
- **Power Consumption**: 2.4 W
- **Dimensions**: 380 (W) x 72 (H) x 250 (D) mm
- **Weight**: 1.5 kg/13 lb, 5 oz.
- **Accessories**: 12V AC Adapter
- **Options**: Memory Cartridge M-64C
- **Options**: Pedal Switch DP-2

TR-707

- **Display Window**: LCD (2201062000), P72018 50KB (2201064000)
- **Pot**: 5020956KB, 15mm travel (1344910000)
- **Pot, dual**: 5020956KB, 15mm travel (1344910000)
- **LED red**: 5020956KB, 15mm travel (1344910000)
- **LED green (L)**: 5020956KB, 15mm travel (1344910000)
- **LED red**: 5020956KB, 15mm travel (1344910000)
- **LED green**: 5020956KB, 15mm travel (1344910000)
- **LED red**: 5020956KB, 15mm travel (1344910000)
- **LED green**: 5020956KB, 15mm travel (1344910000)
- **LED red**: 5020956KB, 15mm travel (1344910000)
- **LED green**: 5020956KB, 15mm travel (1344910000)

TR-727

- **Voice Board (7313604000)**: Vol (2291098100)
- **Volume Board (7313605000)**: Vol (2291098200)
- **Switch Board (7313606000)**: Sw (2291097900)
- **LCD Board (7313806000)**: LC (2291098000)

Battery Compartment

- 3 x 8mm BH, P, BC
- 3 x 12mm BH, P, N
- 3 x 8mm BH, P, BC
- 3 x 8mm BH, P, BC
- 3 x 8mm BH, P, BC
- Rubber Connector, LCD (2291098300)
- 2 x 10mm BH, P, BC
- 2 x 10mm BH, P, BC

(FEB. 1988 B-2 2nd) Printed in Japan B-3
LCD Driver HD61602

Pin configuration (Top View)

TERMINAL ASSIGNMENTS

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Pin name</th>
<th>Pin no.</th>
<th>Pin name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RA0</td>
<td>2</td>
<td>RA1</td>
</tr>
<tr>
<td>2</td>
<td>D00F</td>
<td>3</td>
<td>D00G</td>
</tr>
<tr>
<td>3</td>
<td>D010</td>
<td>4</td>
<td>D011</td>
</tr>
<tr>
<td>4</td>
<td>D012</td>
<td>5</td>
<td>D013</td>
</tr>
<tr>
<td>5</td>
<td>D014</td>
<td>6</td>
<td>D015</td>
</tr>
<tr>
<td>6</td>
<td>D016</td>
<td>7</td>
<td>D017</td>
</tr>
<tr>
<td>7</td>
<td>D018</td>
<td>8</td>
<td>D019</td>
</tr>
<tr>
<td>8</td>
<td>D020</td>
<td>9</td>
<td>D021</td>
</tr>
<tr>
<td>9</td>
<td>D022</td>
<td>10</td>
<td>D023</td>
</tr>
<tr>
<td>10</td>
<td>D024</td>
<td>11</td>
<td>D025</td>
</tr>
<tr>
<td>11</td>
<td>D026</td>
<td>12</td>
<td>D027</td>
</tr>
<tr>
<td>12</td>
<td>D028</td>
<td>13</td>
<td>D029</td>
</tr>
<tr>
<td>13</td>
<td>D030</td>
<td>14</td>
<td>D031</td>
</tr>
<tr>
<td>14</td>
<td>D032</td>
<td>15</td>
<td>D033</td>
</tr>
<tr>
<td>15</td>
<td>D034</td>
<td>16</td>
<td>D035</td>
</tr>
<tr>
<td>16</td>
<td>D036</td>
<td>17</td>
<td>D037</td>
</tr>
<tr>
<td>17</td>
<td>D038</td>
<td>18</td>
<td>D039</td>
</tr>
<tr>
<td>18</td>
<td>D040</td>
<td>19</td>
<td>D041</td>
</tr>
<tr>
<td>19</td>
<td>D042</td>
<td>20</td>
<td>D043</td>
</tr>
<tr>
<td>20</td>
<td>D044</td>
<td>21</td>
<td>D045</td>
</tr>
<tr>
<td>21</td>
<td>D046</td>
<td>22</td>
<td>D047</td>
</tr>
<tr>
<td>22</td>
<td>D048</td>
<td>23</td>
<td>D049</td>
</tr>
<tr>
<td>23</td>
<td>D050</td>
<td>24</td>
<td>D051</td>
</tr>
<tr>
<td>24</td>
<td>D052</td>
<td>25</td>
<td>D053</td>
</tr>
<tr>
<td>25</td>
<td>D054</td>
<td>26</td>
<td>D055</td>
</tr>
<tr>
<td>26</td>
<td>D056</td>
<td>27</td>
<td>D057</td>
</tr>
</tbody>
</table>

Casing

- **Top Panel**
 - 2201064700
 - 2201066400

- **Cartridge Lid**
 - 2202094900

- **Eaxstheem**
 - 2202092900

- **Window Cover**
 - 2202092900

Casing

- **Top Panel**
 - 2201064700
 - 2201066400

Eaxstheem

- 2202094900

Sound ROM

- 15179719
 - H8482712B-G-25
 - MNOS EPROM

- 15179694
 - H8461256PC-79
 - MNOS Mask ROM

- 15179649
 - H8461256PC-79
 - MNOS Mask ROM

Voicing Board

- 73136064000
 - 7313605000

Volume Board

- 22910980002

TR-707

- 2201064700

- 2201066400
COMMON PARTS

CASING
2201064600 Bottom Case
2202069100 Battery Cover
2202069200 Display Window
2202069300 LCD Backsheet
2020596400 Cartridge Lid

KNOB, BUTTON, KEY TOP
2247025900 Knob gray TEMPO
2247036700 Key Top (Large) gray Main Key 1-6, ENTER, START, SHIFT, STOP/CONT
2247036800 Key Top (small) gray RED, BL, LT, HT, OT, GH,
2247037100 Knob white RD, GB, TC, TMB, RIDE, VOLUME
2247037000 Knob orange TEMPO
2247039250 TE-30S black POWER

PCB ASSY
7313080000 Switch Board (pcb 2291097903)
7313070000 LCD Board (pcb 2291098203)
7313080800 Cartridge Board (pcb 2291098300)

COIL, TRANSFORMER
2244055000 SUN9744 Transformer DC/DC converter
12499292 FKO160M014 coil line filter

SOCKET
13492629 MIDI 3-90-533 DIN
13494710 HE0470-01-610 AC adapter
13449415 HS0807-01-010 mini
13449248 HL0521-01-010 stereo
13449133 HL0521-01-110 monaural
13449137 HL2336-01-100 dual
2342516500 FBRB-2BU-01S cartridge

SWITCH
12479719 Rubber switch (Pad) A 14 contact upper row
12479720 Rubber switch (Pad) B 18 contact lower row
13291355 SW-1P POWER

POTENTIOMETER
13339342 S201R 50KB slide 15mm travel
13339341 S302R 50KB slide 15mm travel
13293133 SHM-13AP241016 INH trimmer
12991916 SVRF801-030 50KB trimmer
12991914 SVRF801-204 200KB trimmer

XTAL, CERAMIC RESONATOR
13289376 HC-1870 4.096kHz Xtal
13289375 CSA 1.6MK 1.6MHz ceramic resonator

IC
15229825 K6G811H4PF gate array
15179200 H8030XF CPU
15179207 H8031L4-4 CPU
15219148 H861602 LCD driver
15159503 TC40B000P quad 2-input NAND gate
15159504 TC40B002P quad 2-input NOR gate

MISCELLANEOUS
22137213500 Spring RAM cartridge
2214531300 Shaft RAM cartridge
2345014600 Plate battery
12469117 Heat Sink MT-25-88 (switch pcb)
2219069900 LED Holder (LCD pcb)
13529117 Ceramic Capacitor D55Y5V1803211 0.33uF
12559708 Fusing Resistor FRB1 1/A42.7W
2225028201 Shield Cover top panel
2225026400 Shield (Vocing pcb-Volume pcb)

COMMERCIALY AVAILABLE ACCESSORIES
12569105 Dry cell SH-2S-35 1.5V
12449538 12V AC adapter (100V)
12449539 12V AC adapter (117V)
12449540 12V AC adapter (220V)
12449541 12V AC adapter (240V)
234087500 Connection Cable DP-33

TR-707/TR-727

Australian

2291097903 D55Y5V1803211 0.33uF (switch pcb)
2291099803 photo coupler
2291098300 transisrot array
12499270 FKO160M014 coil line filter
15219148 U861602 CD-12EB1-T 12V sensor
12499136 GL-9RF2 LED red/grn
2291097903 photo coupler
12499270 FKO160M014 coil line filter
15219148 U861602 CD-12EB1-T 12V sensor
12499136 GL-9RF2 LED red/grn
12499270 FKO160M014 coil line filter
15219148 U861602 CD-12EB1-T 12V sensor
12499136 GL-9RF2 LED red/grn
CIRCUIT DESCRIPTIONS
TR-707 and TR-727 are designed based on the same circuit configuration, having more in common with each other. The differences between two models are sound data, component values in several audio stages and a couple of pin connections at IC30 of Voice board.

Both models derive all rhythm sounds from PCM-encoded samples of real sounds stored in ROM. Each waveform is stored either independently (e.g., CYMBAL) or together with another waveform as shown in Tables 1 and 2. Accordingly, sound reproducing circuits are classified into two: multiplex and single. The following description focuses on PCM sound reproduction system, taking TR-707 circuits as a representative.

MULTIPLEX SOUND PROCESSING
MULTIPLE ADDRESS COUNTERS
IC30 RD63H114 on Voicing Board is a custom LSI (call-
ed Gate Array) designed for use in PCM-sound multi-
rythm systems. The LSI assumes the key role in the
TR-707 sound system. It incorporates a master clock
generator, timing generator and 8 13-bit address coun-
ters. The timing generator, not only supplies clocks to
counters for generating address bits, but also feeds per-
ipheral circuits with various timing clocks to sync the
total system operation. Of these timing clocks, A, B, C
and D together make a channel-select code for signal-
ing the ROMs (IC34, 35), MUX IC40 and DMUX IC41
which voice is being addressed by an address counter
in IC30.

マルチ音源

多音源データをモニターしているROM（IC34, 35）
からのデータ読み出し、D/A変換、S/Hおよびその他の
関連回路は、IC30 RD63H114をマスターカードとして動
作します。RD63H114はマルチ音源機能用を開発され
たカスタムLSIである。内部のクロックおよびタイミング
発生回路によりこれら外付けする同期させるクロック
信号を出力します。同期クロックのうちA、B、Cはバイ
ス・チャンネルのセレクトコードを形成しますので特に重
視です。IC30はROM（IC34, 35）内の各音源デー
タのアドレスを順に出力して行いますが、A、B、Cは
今後の音源アドレス（アドレス・カウンタのチャンネル番
号）が出力されているかを、ROM以外のMUX IC40、
DMUX IC41でも知らせます（列SDoの場合A=1、
B=0、C=0。次頁のタイミングチャート参照）
今 BASS DRUM（BD-1）の音を発した状態で、リズムが走る状態とすると。I C30にXST70（チャンネル
0スタート）とXSTA（XST6-7ドライプ）が使われ
から、カウンタCH0が0000Hから段階的にXCKに
加えられた数値をカウンターとして発行します。この
13ビット・アドレスカウンタの値は040Hに
アドレス・レジスタによりADRO～ADRC端子に出力さ
れて行きます。（こうして一連の下の増加が終わらな
か、カウンタは最大1FFFHまでとするとストップしま
となります。）

サウンド・データの読み出し

256キットビットROMとIC34、IC35のメモリ・ロ
ケーションにアクセスするには、15ビットのアドレスが必要
です。配置のMSB 2ビットにはIC3のA、Bビ
ットが含まれます。クリップのA、DROMの
クロックを用いて,on/offクロックにリセットされて
ます。例えば、BD-1とBD-2は同じROMのメモリ
エリアを共有しており、BD-1で示すデータが
BD-2にも反映される場合があります。国
図を参照）。この為、BD-1の場合、ROMのA 0ビ
ットは常に
0で、IC3、IC32を通じて加えられますが、BD-2
の場合は1）

ROMから読み出されたサウンドデータは、IC37
（ラジオ・ネットワーク内蔵）でデジタル音源に変換されます
が、内部装置の外部の音源は内部に装置されている。
再生系のエンコーダーは、IC37のRD
をREF端に送るエンV GENからの信号によっ
て左右されます。

エンベロープ・アクセン

データを入力してIC31はI C3のレベル
とDYNAMICS（ACCENT）。どのレベルは
常に0です。レベルの設定にはカウションが
必要です。レベルの設定値はIC28からría
基準に変換されます。レベルの設定値
は、頻繁に変更すると音の音量が
変わることがあります。レベル設定が
適切な状態で、音源モードを
デジタル録音する前に設定してください。
設定はIC30のサウンドデータ全体がROMから読み出
されることもよくなるので設定されています。

I C30にアドレスカウンタのチャンネル番号と
I C40とI C41のチャンネル番号が異なります。こ
れはROMのサウンドデータの、アクセスされる時刻
CLK4の1サイクル遅れでIC36にロードされ
D/A変換されるのでです。そしてTRIGおよび
LEVEL/DYNAMICSデータもそれぞれ遅れて出
力されます。
HI HAT

Output from Q35 has no distinction between closed hi hat and open hi hat and is given a particular waveform (decay) at VCA Q22 and IC42 as OPEN/CLOSED select signal is applied on the base of Q21.

SINGLE SOUND PROCESSING

Each of CYMBAL, voices and CRASH and CRASH CYMBAL has dedicated sound ROM, address counter, D/A converter and envelope generator. The difference from Multiplex processing in circuit configuration is that envelope control is accomplished after the wave data becomes analog form.

LEVEL/DYNAMICS (ACCENT CV) routed to Q18 emitter (CRASH) is charged into envelope capacitor C50 on TR1, giving a contour to CRASH sound passing through Q14.

<table>
<thead>
<tr>
<th>TR-707 Sound ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC NO.</td>
</tr>
<tr>
<td>2217</td>
</tr>
<tr>
<td>2221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TR-727 Sound ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC NO.</td>
</tr>
<tr>
<td>1219</td>
</tr>
<tr>
<td>1222</td>
</tr>
</tbody>
</table>

Table 2

TESTING AND ADJUSTING

The built-in test program executes the following test and adjusting routines while in Test Mode.

RUNNING TEST PROGRAM

While holding down CLEAR and INSTRUMENT, switch the power ON. The unit is now in the test mode and the test program initiates test routines with TEST 1.

TEST 1. LED SEQUENTIAL LIGHTING

Upon entering test mode the program lights up LEDs, starting with MAIN KEY 1 through SCALE INDICATOR, PATTERN GROUP and CARTRIDGE (red and green alternately) and repeats. Leave the LEDs lighting and go to TEST 2.

TEST 2. ALL LEDS AND LCD DOTS LIGHTING

Press ENTER and verify lighting of all LEDs and LCD dots. Leave then lit and go to TEST 3.

TEST 3. SWITCHES AND ACCENT AMOUNT READING

Press ENTER. All LCD display will be cleared OFF. Referring to the illustration below, push numbered buttons 1–32 one by one and check for the lighting of corresponding dot on either Bass Drum (BomGo) or Snare Drum (Hi Conga) row on the display window. Slide up or down ACCENT and verify that TEMPO MEASURE window reads 1 and 16 at the extremities of travel.

Hi Hat に対しては、もう一側エンベロープ回路（VCAa, IC42a, Q32）が追加されており、クールなオープンとディテイルを切替えています。

シングル波

RIDE CYMBAL および CRASH CYMBAL は、それぞれ専用のアドレス・カウンタ、ROM および D/A コンバーターを持っていますが動作原理はメタノ音部の場合と変わりません。しかし、エンベロープが D/A 变換器 VCAa に加えられる点が違うです。

ACCENT AMOUNT ADJUSTMENT

This test must be carried out in the test mode and follow the tests above.

1. Set ACCENT at MIN and adjust TM2 of VOICING board for a transition point of "1" to/from "2" of TEMPO MEASURE display reading.

2. Set ACCENT at MAX and adjust TM3 for a transition point of "15" to/from "16" of TEMPO MEASURE display reading.

The unit will remain in the test mode until the power is turned OFF.

TEMPO CLOCK RATE ADJUSTMENT

This adjustment must be done in the normal operation mode.

1. Set TEMPO at FAST and adjust TM1 of VOICING board for 260 reading on TEMPO MEASURE window.

次に、アクセント（AC）つまみを下げるとき LCD の TEMPO/MEASURE 部に数字が表示されます。MIN の位置で "1" 、MAX で "16" とならない場合は、次のアクセスレベル調整で行います。

調整が不完全で、通常のモードに戻るには一度電源をオフにして下さい。

アクセントレベル調整

本調整はテストモードで行います。上記のテストの後で行って下さい。

1. アクセント（AC）を MIN にセットし、TM2（ボーキング基準）で TEMPO/MEASURE の表示が "1" か "2" になる臨界点に調整します。

2. AC を MAX にセットし、TM3 で表示が "15" か "16" になる臨界点に調整します。

テンポ調整

本調整は通常のモードで行います。テストモードになっている場合は、一度電源をオフにして下さい。

TEMPO を FAST にセットし、TM1（ボーキング基準）で TEMPO/MEASURE の表示が 250 になる様調整します。
VOLUME BOARD
TR-707 7313605000 (pcb 2291096002)
TR-727 7313605000 (pcb 2292019000)
View from foil side

BELLO PCB LAYOUT For TR-707
TR-727's identical to TR-707's except for those represented in red
in the circuit diagram left.

LCD BOARD
7313607000
(View from foil side)
(pcb 2291098003)

SWITCH BOARD
7313606000 (pcb 2291097003)
View from foil side
VOICING BOARD

TR-707 7313604000 (pcb 2291098102)
TR-727 7313804000 (pcb 2292018900)

BELOW PCB LAYOUT For TR-707
TR-727 is identical to TR-707's except for those represented in red in the circuit diagram left.

以下の基板図はTR-727用です。
TR-727の場合は図解図の赤線表示に従って相違点を確認して下さい。
TR-707/TR-727 MIDI IMPLEMENTATION

1. TRANSMITTED DATA

<table>
<thead>
<tr>
<th>Status</th>
<th>Second</th>
<th>Third</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0132 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
</tbody>
</table>

Notes:
1. Transmitted channel #1 can be changed to 1-16 from the front panel. When the power is applied, the transmitter channel # set prior to the last power OFF remains unchanged.
2. When the power is applied, the front panel channel # is set to 1.
3. Tempo Mode:
 - SSSSSSSS: Synchronized with the clock of the host.
 - SSSSSSSS: Not synchronized with the clock of the host.

4. Note numbers are assigned as follows:
 - Setting A: Electronic Organ, Keyboard, Tape Interface.
 - Setting B: The "B-D OUT" key (NEXT 64 notes) are assigned while the "B-D OUT" button is being pressed.

5. TR-727

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Setting A</th>
<th>Setting B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-D OUT</td>
<td>12 12 12</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Note On</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Note Off</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. TR-707

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Setting A</th>
<th>Setting B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-D OUT</td>
<td>12 12 12</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Note On</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Note Off</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RECOGNIZED RECEIVE DATA

<table>
<thead>
<tr>
<th>Status</th>
<th>Second</th>
<th>Third</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0132 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
<tr>
<td>0001 000</td>
<td>0144 000</td>
<td>0000 000</td>
<td>0000 000</td>
</tr>
</tbody>
</table>

Notes:
1. Transmitted channel #1 can be changed to 1-16 from the front panel. When the power is applied, the transmitter channel # set prior to the last power OFF remains unchanged.
2. Transmitted channel #1 can be changed to 1-16 from the front panel. When the power is applied, the transmitter channel # set prior to the last power OFF remains unchanged.

3. HANDSHAKEYING COMMUNICATION

3.1 Message Type

3.1.1 Wait to send a file

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 0001</td>
<td>Exclusive Status</td>
</tr>
<tr>
<td>0110 0001</td>
<td>Data</td>
</tr>
<tr>
<td>0101 0001</td>
<td>End of System Exclusive</td>
</tr>
</tbody>
</table>

3.1.2 Request a file

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 0000</td>
<td>Exclusive Status</td>
</tr>
<tr>
<td>0101 0000</td>
<td>Data</td>
</tr>
<tr>
<td>0101 0011</td>
<td>End of Track</td>
</tr>
<tr>
<td>0101 0010</td>
<td>End of File</td>
</tr>
</tbody>
</table>

3.1.3 Data

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 0000</td>
<td>Exclusive Status</td>
</tr>
<tr>
<td>0110 0000</td>
<td>Data</td>
</tr>
<tr>
<td>0101 0011</td>
<td>End of Track</td>
</tr>
<tr>
<td>0101 0010</td>
<td>End of File</td>
</tr>
</tbody>
</table>

3.2 Sequence of Communication

3.2.1 When the NDP is recognized

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 0001</td>
<td>Exclusive Status</td>
</tr>
<tr>
<td>0110 0001</td>
<td>Data</td>
</tr>
<tr>
<td>0101 0011</td>
<td>End of System Exclusive</td>
</tr>
</tbody>
</table>

3.2.2 When the NDP is received with error

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 0001</td>
<td>Exclusive Status</td>
</tr>
<tr>
<td>0110 0001</td>
<td>Data</td>
</tr>
<tr>
<td>0101 0011</td>
<td>End of System Exclusive</td>
</tr>
</tbody>
</table>

3.3 When the NDP is received with normal data

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 0000</td>
<td>Exclusive Status</td>
</tr>
<tr>
<td>0110 0000</td>
<td>Data</td>
</tr>
<tr>
<td>0101 0011</td>
<td>End of System Exclusive</td>
</tr>
</tbody>
</table>

3.4 Acknowledge

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 0000</td>
<td>Exclusive Status</td>
</tr>
<tr>
<td>0110 0000</td>
<td>Data</td>
</tr>
<tr>
<td>0101 0011</td>
<td>End of System Exclusive</td>
</tr>
</tbody>
</table>

3.5 Continue

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 0000</td>
<td>Exclusive Status</td>
</tr>
<tr>
<td>0110 0000</td>
<td>Data</td>
</tr>
<tr>
<td>0101 0011</td>
<td>End of System Exclusive</td>
</tr>
</tbody>
</table>