How to make Muse music.
The Muse is a completely new form of musical self-expression.

It makes composing and playing music almost as easy as adjusting your television set.

This booklet shows you how to make Muse music. How to re-create some of the music that has already been composed on the Muse. And how to go on from there, composing music that has never been heard before.

The Muse was invented by two M.I.T. professors. It's a small digital computer that uses the latest electronic technology.

But no experience is required, either in computers or in music. First get used to playing the Muse by following the step-by-step instructions in this booklet. Then become a composer in your own right.

Incidentally, the Muse is not a "music box." You can't get it to play "Twinkle, Twinkle, Little Star," or "Yankee Doodle," etc. At least we don't think you can.

The Muse starts where all the music that has ever been composed leaves off. The Muse is for tomorrow's music. Music that has never been heard before... until you.

That's what is ahead for you — a unique experience.

The Muse is one of the products of Triadex, Incorporated.

Triadex, Incorporated, 1238 Chestnut Street, Newton Upper Falls, Massachusetts 02164 (617) 969-3239.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>INTERVAL</th>
<th>THEME</th>
<th>Volume</th>
<th>Tempo</th>
<th>Pitch</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael's Tune</td>
<td>B-7 B-8 B-5 OFF</td>
<td>OFF B-4 B-23 OFF</td>
<td>4  5</td>
<td>4</td>
<td>Normal</td>
<td></td>
</tr>
</tbody>
</table>
The best way to begin is to begin.

So ...

Match the slide switch settings on your Muse to the settings shown in the picture (as also shown on the Recipe Chart below the picture).

This means the four slide switches in the "Conductor" section of the Muse's faceplate — the lower left hand corner — are set as follows; Volume at 4, Tempo at 3, Pitch at 4, and Fine Pitch at 4. The settings for the eight long slide switches in the "Composer" section — upper right on the face plate — should be: A at B7, B at B4, C B5, D off, E off, F B4, G B3, Z off.

Plug in the Muse, put the Auto-Hold-Step switch on Auto ... push the Off-On-Start switch down to Start and let it jump back to On.

Now sit back and listen.

That's Michael's Tune — named after the little boy who discovered it.

There now. You've played your first piece of Muse music.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>INTERVAL</th>
<th>THEME</th>
<th>Volume</th>
<th>Tempo</th>
<th>Pitch</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muser's Waltz</td>
<td>B-10</td>
<td>ON</td>
<td>C4</td>
<td>B-1</td>
<td>B-2</td>
<td>5</td>
</tr>
</tbody>
</table>
There's a million compositions for you to make on your Muse.
Most of them undiscovered. Most of them waiting for you to pry them loose.
One of the known tunes is The Muse's Waltz.
Let's hear it.
First put the On-Off-Start switch... (lower left hand corner in the Conductor section)... to Off.
Now match the slide switch settings on your Muse to the photograph and the Recipe Chart below it.
Press On-Off-Start down to Start and let it come back up to On.
Voila — The Muse's Waltz.
Here's how The Muse's Waltz looks in conventional music notation. (Conventional notation is unnecessary with the Muse, but interesting to see.)

1. I hear the music I play on my Muse
2. Everybody knows what I'm talking about
3. Lum Bum Boo Bum Dee Doo Bum Ditty Doo Da
4. Amusing a-rousing I love it so.
5. Melodies rhythms I'm sure you'll agree.
6. Lum Bum Boo Ditty Dee Do Lum Ditty Do Wee.

If you'd like to sing along, you may want to slow the Muse's tempo down. That, of course, is the function of the Tempo switch in your Conductor section. Slide it downward toward "Slow" to the tempo that's most comfortable for you — probably around 2 or 3.

Now, just for the heck of it, speed the tempo way up to "Fast." Then slide it all the way down and up quickly. Play around with the tempo a bit, and see the kinds of effects you get.

All right, back to business.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>INTERVAL</th>
<th>THEME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>A: C-1</td>
<td>W: OFF</td>
</tr>
<tr>
<td></td>
<td>B: C-2</td>
<td>X: OFF</td>
</tr>
<tr>
<td></td>
<td>C: C-4</td>
<td>Y: OFF</td>
</tr>
<tr>
<td></td>
<td>D: OFF</td>
<td>Z: OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Tempo</th>
<th>Pitch</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Back, as they say, to basics.

Turn the Muse off.

Set your switches to match the photograph and Recipe Chart.

Push Off-On-Start down to Start and let it back up to On.

Right — it's the good old scale; eight notes in ascending sequence repeated over and over.

The time has come to work with the Composer of the Muse — the Interval and Theme switches.

Every time you set them in the pattern they are now the Muse will play the scale. So let's see what happens when you change the switch pattern.

Push the fourth Interval switch — called "D" — down to position C-8 like this.

Now you're playing a two-octave scale instead of one. Interval switch D controls octaves.

Next slide Interval switches B and D up to OFF.

That makes a sort of "trill" pattern like this:

Now experiment with all four Interval switches: A, B, C, and D. Move them individually around to different positions in the "Count Region" — that's from Off down to C-6. (Blue area).

Notice that you are generating more complex tonal patterns when you put the Theme switches in the C-3 and C-6 positions. That's because those two positions group the notes of your melody in threes and sixes, suggesting waltz-like musical ideas.

How does this work? Probably the best way to explain it is to have you hear a simple example. Set your Interval and Theme switches in this pattern:

Press Off-On-Start to Start and back to On.

What you are hearing is what musicians call a "perfect fifth."

By putting Interval switch C in the C-4 position you have made the Muse move four notes higher whenever the blue light at the end of the C-4 row is lit. The "A" switch moves one note higher, the "B" switch two notes, and the "C" switch four notes.

Again, experiment around with this, and notice how the blue lights indicate what's happening note-wise.

Incidentally, it's a good idea to slow the Tempo switch down to position 1 or 2 while you experiment, so that you can see and hear the differences which the Interval switches create.

And one more thing: Whenever you feel like taking a break, to just hear the Muse play something, turn to Page 15. There you'll find Recipe Charts of several compositions. Set your Muse switches to the positions indicated and see what you get. (Or rather hear what you get.)
<table>
<thead>
<tr>
<th>TITLE</th>
<th>INTERVAL</th>
<th>THEME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Ed’s Rhythm Piece</td>
<td>B-6</td>
<td>B-0</td>
</tr>
</tbody>
</table>
Finally — the Theme switches.

This is where most of the musical excitement comes from. The Theme switches tell the Muse how a melody is to be developed. Of particular importance in this area are the positions from B-1 through B-31. They control what computer people call “a non-random shift-register sequence.”

Want to hear what one of those sounds like?

Then set up for “Ed’s Rhythm Piece.” Match your switches to the photographs and/or Recipe Chart.

Notice that at the beginning of this piece, the rhythm is quite simple, but then develops into a much more complex and interesting sequence. But that it is still based on the same musical idea.

Because only two of the Theme switches have been used, the piece doesn’t last very long before it starts back at the beginning.

If you move all four Theme switches down to different rows of the B region (B-4 through B-31) you might produce a composition that will last for several months before starting back at the beginning.

(Unless you have lots of time on your hands, it’s best to take our word for it.)

So instead, let the interesting rhythm you’ve already established with the Theme switches run, and vary the melodic pattern by moving the Interval slides around into various positions. This is a good way to get the feel of the entire Composer section — and the relationship between Theme and Interval switches.

Suggestion: Whenever you move a Theme switch it is a good idea to press the Start button. This makes the composition you have created start at its very beginning.

On the following 2 pages you’ll find a complete diagram of all the Muse switches. You may want to use it as a general reference guide in going on to create Muse music.

Further on in this booklet are Recipe Charts of some of the pieces that have already been composed on the Muse. You’ll also find some blank Recipe Charts. Whenever you create something you enjoy, write the Recipe down so you’ll always be able to recreate it.

There is also a section which shows you some of the accessories that are available to make your Museings even more interesting.

And finally there is a more technical discussion of how the Muse does what it does.

The whole point of the Muse is to give you the chance to express yourself in an absolutely unique way.

It’s for you to create something which has never been created before.

It’s for you to enjoy.
### Conductor Section

**Off-On-Start.** When you press down to Start position, the composition goes back to the very beginning.

**Volume.** Upward for loud, down for soft.

**Tempo.** Upward for very fast, down for slow.

**Pitch.** Upward for high soprano, down for bass. If you move the Pitch switch rapidly while the Muse is playing, you can get many unusual sound effects. Moving it slowly while the Muse is playing is a good way to get more people to leave the room.

**Fine Pitch.** This is for making delicate adjustments of pitch. Mainly for use when playing the Muse with other instruments.

**Auto-Hold-Step.** Should normally be up in the Auto position for general use. Placed in the center or Hold position, the Muse will instantly stop wherever it is in the music. By pressing it down to the Step position, the Muse will play one note at a time. Note: try pressing down to Step many times. You are now controlling the Muse's playing by yourself, which means you can play any rhythm you can "tap" on the switch.

### Composer Section

**Interval Switches A, B, C, and D.** These control the notes to be used in a particular composition.

**Theme.** Switches W, X, Y, and Z. These switches, particularly when placed in the B-regions (corresponding to the green lights) create complex and intricate variations on a basic melody.

**Indicator Lights.** Blue and green. The lights represent the three regions: Off/On, the C region (blue), and the B region (green). Each row, and its light, represents one position for the Composer switches. The various positions are off or on as indicated by the lights being off or on. Any Composer switch will be on at any given moment when its corresponding light is on.

**Rest and External Switches.** The Rest switch, when in the up or Rest position, introduces silent pauses in the development of your composition, in place of the lowest note. Many, but not all, tunes are improved by this. The External switch should be kept in the Normal position.
**Accessories**

*External Amplifier/Speaker.* This single unit brings an added depth of sound, and a new dimension of effects which you can have your Muse produce.

*Amplifier/Speaker Extension Cord.*

*The Light Show* See the music you create on your Muse expressed in color and motion, with light. The colors are not the ordinary meaningless psychedelic effects found in other popular gadgets, but depend precisely on what musical notes are being played. Less spectacular, perhaps, but more meaningful. The Light Show makes your Muse-ings much more fascinating.

*Inter-Muse Cable and Adapter.* These enable you to connect two or more Muses together for greater depth in musical expression. (See page 17 for Recipe Charts of Multi-Muse compositions.)

All Muse accessories are available where you bought your Muse or by writing direct to Triader, Inc.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>INTERVAL</th>
<th>THEME</th>
<th>Volume</th>
<th>Tempo</th>
<th>Pitch</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Crazy Cuckoo</td>
<td>C-1</td>
<td>B-1</td>
<td>B-31</td>
<td>C-8</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Michael's Tune</td>
<td>B-7</td>
<td>B-8</td>
<td>B-5</td>
<td>OFF</td>
<td>OFF</td>
<td>B-4</td>
</tr>
<tr>
<td>Birds</td>
<td>B-28</td>
<td>B-29</td>
<td>B-30</td>
<td>C-4</td>
<td>B-30</td>
<td>B-31</td>
</tr>
<tr>
<td>Dorian Muse</td>
<td>ON</td>
<td>B-1</td>
<td>B-3</td>
<td>C-8</td>
<td>B-1</td>
<td>B-16</td>
</tr>
<tr>
<td>Mesopotamia</td>
<td>C-2</td>
<td>B-5</td>
<td>B-9</td>
<td>OR</td>
<td>C-8</td>
<td>B-9</td>
</tr>
<tr>
<td>Muser's Waltz</td>
<td>B-10</td>
<td>B-8</td>
<td>B-7</td>
<td>OFF</td>
<td>ON</td>
<td>C-4</td>
</tr>
<tr>
<td>Swiss Yodeler</td>
<td>B-8</td>
<td>C-1</td>
<td>B-16</td>
<td>OFF</td>
<td>B-22</td>
<td>B-21</td>
</tr>
<tr>
<td>Ron's Rhapsody</td>
<td>B-6</td>
<td>B-9</td>
<td>B-6</td>
<td>C-#</td>
<td>B-31</td>
<td>C-4</td>
</tr>
<tr>
<td>Christmas Bells</td>
<td>B-31</td>
<td>B-30</td>
<td>B-29</td>
<td>B-7</td>
<td>B-28</td>
<td>B-29</td>
</tr>
<tr>
<td>Marvin's Yodel</td>
<td>B-1</td>
<td>B-11</td>
<td>B-9</td>
<td>B-25</td>
<td>B-16</td>
<td>OFF</td>
</tr>
<tr>
<td>Federal Row</td>
<td>B-14</td>
<td>B-5</td>
<td>B-12</td>
<td>B-2</td>
<td>B-21</td>
<td>B-24</td>
</tr>
<tr>
<td>Al's Surprise</td>
<td>B-1</td>
<td>B-5</td>
<td>B-7</td>
<td>C-#</td>
<td>C-8</td>
<td>B-1</td>
</tr>
<tr>
<td>Meditation</td>
<td>B-1</td>
<td>B-14</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>B-16</td>
</tr>
<tr>
<td>Fiat Baroque</td>
<td>C-1</td>
<td>B-15</td>
<td>B-1</td>
<td>C-#</td>
<td>B-30</td>
<td>B-29</td>
</tr>
<tr>
<td>Polka</td>
<td>B-1</td>
<td>B-11</td>
<td>B-11</td>
<td>C-#</td>
<td>B-8</td>
<td>B-11</td>
</tr>
</tbody>
</table>

**Muse Music Recipe Charts**

Here are the settings for some of the Muse music we have found to be interesting. Simply position the switches on your Muse as indicated.

There are also many more blank charts for you to fill in with settings for any of your compositions you might want to play later.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>INTERVAL</th>
<th>THEME</th>
<th>Volume</th>
<th>Tempo</th>
<th>Pitch</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhythm Cluckles</td>
<td>B1 B2 C4 C8</td>
<td>OFF OFF B31 C4</td>
<td>5</td>
<td>3,4,5</td>
<td>3-6</td>
<td>OFF</td>
</tr>
<tr>
<td>Spudle</td>
<td>C8 B2 B5 B6</td>
<td>OFF OFF B31 B31</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>OFF</td>
</tr>
</tbody>
</table>
**Multi-Muse Recipe Charts**

<table>
<thead>
<tr>
<th>TITLE</th>
<th>INTERVAL</th>
<th>THEME</th>
<th>Volume</th>
<th>Tempo</th>
<th>Pitch</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levin's Duet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOX #1</td>
<td>B-1</td>
<td>B-9</td>
<td>B-17</td>
<td>C-8</td>
<td>C-3</td>
<td>B-31</td>
</tr>
<tr>
<td>BOX #2</td>
<td>B-1</td>
<td>B-24</td>
<td>B-9</td>
<td>C-8</td>
<td>C-3</td>
<td>B-31</td>
</tr>
<tr>
<td>Marvin's Duet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box #1</td>
<td>B-1</td>
<td>B-5</td>
<td>B-9</td>
<td>B-13</td>
<td>B-1</td>
<td>B-31</td>
</tr>
<tr>
<td>Box #2</td>
<td>B-17</td>
<td>B-21</td>
<td>B-17</td>
<td>C-8</td>
<td>B-1</td>
<td>B-31</td>
</tr>
<tr>
<td>Roger's Duet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box #1</td>
<td>B-11</td>
<td>B-1</td>
<td>B-4</td>
<td>ON</td>
<td>C-1</td>
<td>B-2</td>
</tr>
<tr>
<td>Box #2</td>
<td>B-11</td>
<td>B-17</td>
<td>B-4</td>
<td>C-1/2</td>
<td>B-2</td>
<td>B-3</td>
</tr>
<tr>
<td>Finger's Duet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box #1</td>
<td>B-10</td>
<td>B-9</td>
<td>B-7</td>
<td>C-1/2</td>
<td>B-17</td>
<td>B-31</td>
</tr>
<tr>
<td>Box #2</td>
<td>B-10</td>
<td>B-8</td>
<td>B-7</td>
<td>B-13</td>
<td>B-17</td>
<td>B-3</td>
</tr>
<tr>
<td>Blue Slur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box #1</td>
<td>B-1</td>
<td>B-2</td>
<td>B-3</td>
<td>OFF</td>
<td>C-1</td>
<td>B-1</td>
</tr>
<tr>
<td>Box #2</td>
<td>B-20</td>
<td>B-19</td>
<td>B-18</td>
<td>B-17</td>
<td>B-1</td>
<td>B-2</td>
</tr>
</tbody>
</table>

**Multi-Muse Music**

Connect two or more Muses with Inter-Muse Cable Adapter(s). The first Muse in the series will be the master. Its controls will govern the pitch and tempo of the other Muses or Muses in the series — the "slaves." However, all other controls (Theme, Interval, Volume, etc.) will work independently in the slaves.

Now select one of the compositions from the Multi-Muse Recipe Chart to get an idea of the possibilities available to you.

Suggestions for when you're ready to compose on your own:

Compositions much like traditional harmony can be made by putting all the Theme switches in matching positions (e.g., all X switches at C-6, all Ys at B-31, etc.) Now put Interval switches "A" in the same position and pair Interval switches "B" and "C" in the same position respectively (Master: B switch on C-1, C switch on C-2, Slave: B switch on C-5, and C switch on C-1).

Once you hear how this works for a start, move the various Theme and Interval switches to different positions, one or two at a time. Be sure to press Start each time.

To compose in the milieu of classical counterpoint, set the Theme switches identically. But, however you set the Interval switches on the Master, put them eight rows further down, respectively, on the slave. Here again, you can achieve many exciting and complex results by making careful variations ... making sure to press Start after each change.

Incidentally, the compositions spelled out in these Recipes are just a few of the ones we have discovered while testing the Muse to see what it could do. There are millions more that are yet to be made.

If you come up with one that is particularly exciting, we'd be very happy to have you tell us about it. Just drop us a note with your recipe.

Who knows, you may end up being a famous Muse composer.

*Slave's External Switch must be in external.*
What is going on inside the Muse

Well, obviously one thing that happens in the Muse is sound generation. The Muse makes notes. That's what makes it like any conventional musical instrument.

But the other thing that is happening in there is what makes the Muse completely different. Decisions.

The Muse makes choices. It selects the notes to make.

In other words, the Muse is a computer.

A computer, basically, is a machine that makes choices. In billions of instances it chooses between Yes or No; On or Off. That is to say that the Muse or any computer is a binary device.

And this is how it works.

Notice that alongside the Interval and Theme switches of the Muse there is a column of lights — one light for each of the positions the switches can be in. These indicator lights are our window to the mind of the Muse — its decision making capability. By understanding why the indicator lights behave as they do, you'll understand how the Muse makes the music it does.

Once you understand that, you'll be able to predict what the Muse will play for any given set of switch positions.

Take an ordinary light bulb as a simple example of a "binary device" — because it has the potential of always being in one of two states; on or off. Digital computers (the Muse included) are nothing more than a vast system of binary devices — devices that have the potential of always being in one of two states; on or off. (They are off when no electricity is flowing through, and on when electricity does flow.)

When any one of the binary devices in the system is off (no flow) it stands for the number 0 (zero). When it's on (electricity flowing), it stands for the number 1 (one).

A single light — like one of the indicator lights — can count from 0 to 1. Not terribly far.

So what do you do if you want your system to count to 2?

Add a second light.

When the first light is off and the second is on, that stands for the number two.

Okay. But if you turn the first light back on, so that now both are lit, you have the number 3. (Light #1 is on, which stands for the number 1. Light #2 is on, which stands for the number 2. So just add them together: 1 plus 2 = 3.)

Now put a third light in the series. When it's off it stands for zero just like the others. And when it's on it represents the number 4 (four). With three lights — three binary devices — we can have our series count up to seven:

```
  0 0 0 = 0
  0 0 0 = 1
  0 0 0 = 2
  0 0 0 = 3
  0 0 0 = 4
  0 0 0 = 5
  0 0 0 = 6
  0 0 0 = 7
```

Seven just happens to be the number of musical notes in a scale. Remember? — do, re, mi, fa, sol, la, ti, do. (The "do" at the end is the same note as the first "do", only sounded an octave higher.)

Up to this point we have been talking about numbers instead of notes, but the principle is the same. While other computers harness their binary systems to numbers, the Muse harnesses its binary system to notes.

Let's go back to the three lights. When none are on, let's say that instead of standing for the number 0, it stands for the note C. When light #1 is on, it stands for the note D. When light #2 is on it stands for the note E. And so forth.

Whether your code is numbers or notes, the digital system works the same way. In a numerical code each binary device represents zero when it's off, and a number when it's on — that number, of course, depending on the light's location within the series. While in a musical code it represents a musical note, still depending on its location within the series.

Up to now we have been discussing imaginary lights standing for imaginary numbers and notes.

Now it's time to localize our discussion... in the Muse.

The Muse — a computer.
It contains a very long series of binary devices.

The Muse's binary devices are tiny transistors that are either in a state of on or off. (Don't be confused by the row of lights on the panel — they merely indicate the on-ness or off-ness of the binary devices — transistors — inside.) Here's our previous example of lights and numbers, but now with notes added.

Interval Slides

A  B  C
0 0 0 = "D" or C or "do"
0 0 1 = 1 or D or "re"
0 0 2 = 2 or E or "mi"
0 0 3 = 3 or F or "fa"
0 0 4 = 4 or G or "sol"
0 0 5 = 5 or A or "la"
0 0 6 = 6 or B or "ti"
0 0 7 = 7 or C or "do"

Inside the Muse as you play, thousands of tiny transistors are turning on and off having specific notes generated. The transistors are governed by a clock mechanism which is in turn governed by the setting you have made on the "Tempo" switch.

But there's a lot more to it than that. The on-ing and off-ing of the transistors is further governed by the "Input" you feed in. The framework you establish.

And that's the job of the Theme and Interval switches. A job which is being continually indicated by the indicator lights.

For example, let's look at the green lights in the Muse's B region. They show what is happening in a series of transistors inside. The transistors are arranged in a sort of "chain" which is controlled by the clock mechanism.

At each tick of the clock mechanism, the state — the on-ness or off-ness — of each transistor in the chain is passed on from one to the next. That's what makes the green lights almost seem to move down the panel.

But as the pattern moves down, the chain needs to get new information at its beginning. It has to be told, for instance, whether the first green light (row B-1) should be on or off during the next time around. And that information depends on the position of the switches. To make a very long story short, at each tick of the clock mechanism, the B-1 light will go on whenever (at the previous tick) the Theme switches were connected to — that is in the same row as — an even number of lights that were on.

It's that kind of activity that is going on within the Muse during any given moment.

That's how the Muse combines notes to make music. And since there are more than 14 billion possible note combinations for the Muse to use, it's making decisions or choices from an incredible variety.

In the Muse you have an instrument that has harnessed the most advanced computer technology to put notes together in virtually unlimited ways.

That's why the Muse is so intriguing. It's almost impossible for you to exhaust its possibilities.

Almost...

The Muse
By Triadex, Incorporated